Simple and branched skins of systems of circles and convex shapes
نویسندگان
چکیده
Recently, there has been considerable interest in skinning circles and spheres. In this paper we present a simple algorithm for skinning circles in the plane. Our novel approach allows the skin to touch a particular circle not only at a point, but also along a whole circular arc. This results in naturally looking skins. Due to the simplicity of our algorithm, it can be generalised to branched skins, to skinning simple convex shapes in the plane, and to sphere skinning in 3D. The functionality of the designed algorithm is presented and discussed on several examples.
منابع مشابه
Dense packing of congruent circles in free-form non-convex containers
This work proposes an algorithm for computing dense packings of congruent circles inside general 2D containers. Unlike the previous approaches which accept as containers, only simple, symmetric shapes such as circles, rectangles and triangles, our method works for any container with a general, freeform (spline) boundary. In contrast to most previous approaches which cast the problem into a non-...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملA NEW APPROACH OF FUZZY NUMBERS WITH DIFFERENT SHAPES AND DEVIATION
In this paper, we propose a new method for fuzzy numbers. In this method, we assume that Ai= (ai1, ai2, ai3, ai4) is to be a fuzzy number. So, the convex combination of ai1 and ai2 and also the convex combination of ai3 and ai4 are obtained separately. Then, Mic and Mis that are to be the convex combinations and the standard deviation respectively we acquire them from these components. Finally,...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملSHEET ELECTROMAGNETIC FORMING USING CONVEX PUNCH INSTEAD OF CONVAVE DIE
High speed and absence of a precise control over pressure distribution confine sheet Electromagnetic Forming into a die to simple shapes having shallow depth. It is possible to reach a higher depth by using a convex punch instead of a concave die. In this study, sheet Electromagnetic Forming on a punch and sheet Electromagnetic Forming into a die are investigated. The electromagnetic part of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphical Models
دوره 78 شماره
صفحات -
تاریخ انتشار 2015